📊Промт дня: быстрый разведочный анализ (EDA) нового датасета
Перед тем как приступить к построению моделей или визуализаций, важно понять, с какими данными вы работаете. Разведочный анализ (Exploratory Data Analysis, EDA) помогает выявить структуру, качество и ключевые особенности датасета — это фундамент любого проекта в области аналитики и машинного обучения.
Промт:
Выполни экспресс-EDA (Exploratory Data Analysis) на pandas DataFrame. Проанализируй следующие аспекты: • Определи типы переменных (числовые, категориальные и пр.). • Проверь наличие и долю пропущенных значений по столбцам. • Рассчитай базовые статистики (среднее, медиана, стандартное отклонение и т.д.). • Оцени распределения признаков и выдели потенциальные выбросы. • Сформулируй ключевые наблюдения и инсайты, которые могут повлиять на последующую обработку или моделирование данных.
🎯 Цель — получить общее представление о структуре, качестве и особенностях данных до начала построения моделей или визуализаций.
Поддерживается использование специализированных инструментов: 📝pandas_profiling / ydata-profiling — для автоматического отчета, 📝sweetviz — для визуального сравнения датасетов, 📝seaborn и matplotlib — для точечных визуализаций распределений и корреляций.
📊Промт дня: быстрый разведочный анализ (EDA) нового датасета
Перед тем как приступить к построению моделей или визуализаций, важно понять, с какими данными вы работаете. Разведочный анализ (Exploratory Data Analysis, EDA) помогает выявить структуру, качество и ключевые особенности датасета — это фундамент любого проекта в области аналитики и машинного обучения.
Промт:
Выполни экспресс-EDA (Exploratory Data Analysis) на pandas DataFrame. Проанализируй следующие аспекты: • Определи типы переменных (числовые, категориальные и пр.). • Проверь наличие и долю пропущенных значений по столбцам. • Рассчитай базовые статистики (среднее, медиана, стандартное отклонение и т.д.). • Оцени распределения признаков и выдели потенциальные выбросы. • Сформулируй ключевые наблюдения и инсайты, которые могут повлиять на последующую обработку или моделирование данных.
🎯 Цель — получить общее представление о структуре, качестве и особенностях данных до начала построения моделей или визуализаций.
Поддерживается использование специализированных инструментов: 📝pandas_profiling / ydata-profiling — для автоматического отчета, 📝sweetviz — для визуального сравнения датасетов, 📝seaborn и matplotlib — для точечных визуализаций распределений и корреляций.
Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.
Telegram Auto-Delete Messages in Any Chat
Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.
Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from nl